题面
给定\(n,m\),求:
\[ T(n)=\sum_{i=1}^ni\times f_i \] 其中\(f_i\)为斐波那契数列的第\(i\)项题解
不妨设:
\[ S(n)=\sum_{i=1}^nf_i \] 则可以设:\[ P(n)=nS(n)-T(n)=\sum_{i=1}^{n-1}(n-i)\times f_i \] 所以有:\[ P(n+1)=\sum_{i=1}^{n}(n+1-i)\times f_i=\sum_{i=1}^n(n-i)\times f_i+\sum_{i=1}^nf_i\\ =\sum_{i=1}^{n-1}(n-i)\times f_i+0\times f_n+S(n)=P(n)+S(n) \]然后就可以用矩阵乘法加速递推了。
#include#include int n, m;struct Matrix { int a[4][4]; Matrix() { memset(a, 0, sizeof a); } inline int* operator [] (const int &x) { return a[x]; } inline Matrix operator * (Matrix &b) const { Matrix ret; for(int i = 0; i < 4; ++i) for(int k = 0; k < 4; ++k) for(int j = 0; j < 4; ++j) (ret[i][j] += 1ll * a[i][k] * b[k][j] % m) %= m; return ret; }} S, T;int main () { scanf("%d%d", &n, &m); int k = n; S[0][1] = 1; T[0][0] = T[0][1] = T[0][2] = 1; T[1][0] = T[1][2] = 1; T[2][2] = T[2][3] = 1; T[3][3] = 1; while(k) { if(k & 1) S = S * T; T = T * T, k >>= 1; } printf("%lld\n", (1ll * n * S[0][2] % m + m - S[0][3]) % m); return 0;}